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ABSTRACT: Feedback allows biological systems to control
gene expression precisely and reliably, even in the presence of
uncertainty, by sensing and processing environmental changes.
Taking inspiration from natural architectures, synthetic
biologists have engineered feedback loops to tune the
dynamics and improve the robustness and predictability of
gene expression. However, experimental implementations of
biomolecular control systems are still far from satisfying
performance specifications typically achieved by electrical or
mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable
reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA
transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity
analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene
expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify
performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for
practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback
controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the
performance of biomolecular feedback control systems.
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Cells continuously respond to their environment by
producing and degrading a variety of molecules that

play important roles in metabolic reactions. These reactions
often require stable levels of gene expression, even in the
presence of exogenous or endogenous disturbances. Feedback
in native transcriptional networks can enable homeostasis and
reduce variability,1,2 and engineered negative feedback loops
have been used to robustly regulate the concentration of an
output species.3−6 Yet, there are still few universal closed loop
feedback architectures that have the capacity to precisely
determine the dynamics and the robustness of a target gene
expression process.7,8 Biomolecular feedback systems are
generally built ad hoc, using a limited number of orthogonal
promoters and protein transcription factors, and their design is
rarely portable to other processes or hosts.9 Recent advances in
RNA synthetic biology enable the construction of modular

control systems that are easily adaptable to a broad range of
processes.10

Regulatory RNAs and CRISPRi have emerged as powerful
tools for constructing dynamic genetic circuits for controlling
gene expression.11−15 In particular, small transcription activat-
ing RNAs (STARs) and gRNA-dCas9 regulators are two
examples of RNA based regulators that can be designed to
target different genes simultaneously, and these regulators offer
up to three orders of magnitude of dynamic range of operation
above background.16−19 The versatility and programmability of
these emerging tools make it possible to design control systems
targeting an expanding set of processes within a variety of
biological hosts.
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Here, we present designs for two closed loop biomolecular
controllers that employ different RNA regulation mechanisms
to precisely control the expression of a target gene. Feedback is
introduced via molecular sequestration that serves as an error
computation mechanism. We compare the two regulatory
schemes in their capacity to guarantee that an output species
can accurately follow changes in a reference signal, even if the
kinetic rates are perturbed or a disturbance is added. We
develop ordinary differential equation (ODE) models of these
controllers and analyze their operation through numerical and
mathematical analysis considering a realistic set of parameters.
We also conduct sensitivity analysis to understand the influence
of parameter variability on the output dynamics when the input
undergoes a step change. The two controllers work at different
time scales and are compared quantitatively using traditional
control theory metrics, which illustrates the trade-offs between
design and performance. This computational study serves as a
guide in the design of RNA-based biomolecular controllers for
robust and precise regulation of gene expression. In addition,
our work highlights a numerical approach to screen controller
performance so that it meets specific requirements in practical
applications.

■ RESULTS

Closed Loop RNA-Based Controller Designs. Our
overall goal is to develop a closed loop biochemical controller
that can precisely regulate expression of a target gene. With the
controller, the output concentration (an RNA transcript)
should follow a reference signal (also known as the set-point in
traditional control systems).20 The output should track the
reference robustly, i.e., at steady state the difference between the
reference and the output should be zero following a disturbance
such as perturbations of the kinetic parameters. Moreover, the
controller should also be tunable to meet performance
specifications that govern its transient and steady state
behavior.
Our approach is to interconnect biomolecular sensors and

actuators using the feedback loop architecture traditionally used
in many engineering fields (Figure 1a). To achieve robust
tracking, the process output is compared to a reference signal:
the difference between these signals is called the error. The goal
of the controller is to reduce the steady state error as much as
possible, ideally to zero. The process and the reference must be
measured internally using biochemical sensors, which relay
information by producing the molecules X (representing the
reference signal) and Y (representing the process signal); these
molecules are used for error computation while avoiding
depletion of the reference and process molecules. When a

Figure 1. Closed loop controller designs. (a) Block diagram representation of the closed loop controller. (b) Direct Controller and (c) Indirect
Controller designs, where the color coding corresponds to the blocks shown in (a). Each design uses RNA transcripts (X and Y) to control
expression from the promoter PY. Error computation is achieved through a molecular sequestration reaction. The error signal controls transcriptional
activation, which is performed either directly through X in the Direct Controller or through an intermediate species A in the Indirect Controller.
Details on how the promoter switches from the inactive (PY) to active (PY

+) state are shown alongside. (d) Step change in PX. Note that we define
the reference as (αO

+αX)/(δOαY
+)PX (see Supplementary Note S1); therefore, this step change in PX corresponds to a change in the reference signal

from 0 to 500 nM. (e) Simulation results for the open loop and (f) closed loop controllers. Models are given in eqs 1−9, with parameters in Table 1.
Initial concentrations of molecular species were set to X, Y, A, O, and PY

+ = 0 nM and PY = 20 nM unless otherwise specified.
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difference between X and Y is detected (error), a corrective
signal is computed by the controller block to reduce the error,
via a negative feedback loop. The control block influences gene
expression to decrease the error, leading to accurate reference
tracking. The output dynamics describe the conversion from an
internal signal (e.g., an RNA species) to a measured external
output (e.g., a fluorescent reporter).
In practice, the elements of our molecular control system are

genes and RNA transcripts. In our design, the concentration of
plasmid or DNA encoding for X is used as the reference, and
the controller regulates expression of a gene encoding for Y by
influencing its promoter activity (Figure 1b). We use
transcription as a signal-transduction mechanism: the con-
stitutive promoter PX produces an RNA signal X, and the
regulated promoter PY produces an RNA signal Y. When
activated, promoter PY switches to its active state PY

+, which
transcribes signal Y at a faster rate than in the inactive state.
The RNA transcripts X and Y are used for error computation,
where their concentrations are compared through molecular
sequestration. Once X and Y bind to each other (XY), they
form a waste complex that is not involved in any other reaction
in the system. The formation of complex XY is considered
irreversible because the complex is degraded before it can
dissociate.21,22 As a result of the sequestration reaction, only the
excess molecules of X that did not bind to Y yield an error
signal that is available for control reactions. Nonsequestered X
is used directly as an RNA transcriptional activator that
regulates production of Y (Figure 1b). Thus, we name this
architecture the “Direct Controller”. We also considered an
alternative arrangement, where an additional postsequestration
reaction and intermediate species A are required, where X
indirectly activates expression of the target gene, which we name
the “Indirect Controller” (Figure 1c).
We have focused on these two designs because they describe

experimentally feasible constructs. The Direct Controller
models conditions where RNA species are responsible for
regulatory control. For instance, X could be a small
transcription activating RNA that prevents premature tran-
scriptional termination of Y, where Y is an RNA species that
can sequester X into an inert complex.16,17 In contrast, the
Indirect Controller models conditions where there is an
additional regulatory step. Examples of this step include
translation of X into a transcription factor A that regulates
the promoter PY, or formation of a gRNA-dCas9 complex to
activate transcription of PY (called CRISPR activation or
CRISPRa), where X is the gRNA and A represents the gRNA-
dCas9 complex.23−29

Effective, fast sequestration is essential in both designs for
ensuring closed loop operation. If sequestration is too slow or
inefficient, the process output has a limited capacity to
influence expression of Y. In the limit, if the sequestration
reaction is removed, the system operates without feedback
(open loop). Of note, X and Y only sense the reference and
output signals (Figure 1b); therefore, sequestration enables
error calculation between the reference and output without
affecting their dynamics, because PX and PY are not depleted by
sequestration. Since Y is consumed by the sequestration
reaction, its concentration is not a reliable measure of the
process state, i.e., it exists in the sequestered complex and as a
free molecule that activates transcription of promoter PY

+.
Therefore, to measure PY

+ we use a reporter output species O
which is coexpressed with Y and not consumed in the feedback
reaction (Figures 1b and c).

Mathematical Models. Using the law of mass action, we
modeled the deterministic kinetics of the Direct Controller as

α δ κ ω= − − − + +

t
v

dX
d

P X XY XP PX X X Y Y (1)

α α δ κ= + − −+ +

t
dY
d

P P Y XYY Y Y Y Y (2)

ω= −
+

+

t
v

dP
d

XP PY
Y Y (3)

α α δ= + −+ +

t
dO
d

P P OO Y O Y O (4)

The differential equations describe the rate of change of RNA
species X and Y, the active promoter PY

+, and the output O.
The parameters α and δ are transcription and degradation rates,
with subscripts indicating the corresponding species. κ is the
sequestration rate (error computation reaction). ω and ν are
the association and dissociation rates that characterize binding
of the transcriptional activator (X for the Direct Controller, A
for the Indirect Controller) to the promoter for the gene Y.
The unregulated (basal) promoter state is PY; the activated
promoter state is PY

+, and due to conservation PY
tot = PY + PY

+

at all times. When the promoter is activated, Y and O are
produced with an increased transcription rate (α+). The basal
transcription rates are αY and αO, which we assume are small
compared to αY

+ and αO
+. αX is the transcription rate for

constitutive expression from PX.
The dynamics of the Indirect Controller include an

additional species A, which introduces a delay in the activation
of PY. These reactions are modeled as

α δ κ= − −
t

dX
d

P X XYX X X (5)

α α δ κ= + − −+ +

t
dY
d

P P Y XYY Y Y Y Y (6)

β δ ω= − − + +

t
v

dA
d

X A AP PA A Y Y (7)

ω= − +
+

t
v

dP
d

AP PY
Y Y (8)

α α δ= + −+ +

t
dO
d

P P OO Y O Y O (9)

Here, βA models the rate at which X is translated into A, or the
rate at which X binds to an existing abundant species to form a
complex A. Eqs 1−4 and 5−9 allow us to determine what
output (O) is produced by a given input (PX) for each control
system.
In each design, the dynamics of X and Y are determined by

their production rates and the rates at which they are
consumed, which depend on the sequestration, degradation,
and transcription rates. For the error calculation to be effective,
the sequestration reaction must consume X and Y rapidly
compared to other reactions that use these species, such as the
degradation reaction. The adverse effect of degradation on
reference tracking has been studied in vivo for integral
controllers where cell dilution that degrades the signals can
lead to error miscalculation.30 Moreover, because X (or A in the
Indirect Controller) acts as a transcriptional activator, the
association rate with which the activator binds to PY should be
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higher than its dissociation rate. Finally, for PY, the activated
transcription rate needs to be significantly higher than the basal
transcription rate so the error signal can be amplified to achieve
production of Y and O. These design constraints must be met
to achieve accurate reference tracking.
Our goal is to design closed loop controllers that can be

physically implemented using RNA regulators. Therefore, for
the Direct Controller we used parameter values derived from
kinetic measurements of sRNA-based transcriptional regulators.
For the Indirect Controller we focused on CRISPRa-based
regulators, using gRNA-dCas9 to regulate target gene
expression. These two classes of regulators operate at different
time-scales, where sRNA rates are generally faster than those
associated with CRISPRa regulation (Table 1).17,31−34

Reference Tracking with Open and Closed Loop
Control.We began by verifying that the closed loop controllers
with biologically feasible parameter values enable the output to
track changes in the reference. To do this, we considered a step
change in the input signal (PX) from 0 to 10 nM (Figure 1d),
and compared the response of the open and closed loop
systems (see Methods). We define the reference signal as
(αO

+αX)/(δOαY
+) PX, which is the steady state value of O for

both Direct and Indirect closed loop controllers (see
Supplementary Note S1 for the derivation).
We used parameters derived from the literature in the

simulations (Table 1). In the absence of PX (0 nM), expression
from PY is very low. As PX increases from 0 to 10 nM, the
production of X increases, which in turn increases production
of Y and O. In the absence of the sequestration reaction (κ =
0), the amount of X is not influenced by the concentration of Y.
In this open loop case, X increases production of O, but there is
no feedback to compare O (represented by Y) with the
reference signal. As a result, the steady state output does not
follow the reference signal (Figure 1e). The Indirect Controller
behaves in a similar manner in the open loop case (Figure 1e).
In contrast, in the closed loop case (κ ≠ 0), the sequestration
reaction determines the concentrations of free X and Y,
allowing for effective calculation of the error. Therefore, in
closed loop O tracks the reference signal well for both the

Direct and Indirect Controllers (Figure 1f). In practice, for in
vitro studies, a step change in PX (from 0 to 10 nM) could be
achieved by adding more DNA into the reaction mixture; for in
vivo operation, this could be achieved through the use of an
inducible promoter.

Large Variations in the Reference Signal Can Be
Tracked Accurately. Although we initially considered a
specific step change in PX, accurate tracking requires that the
controllers be able to follow a large range of changes in the
reference signal given the same set of parameters and initial
conditions. Therefore, we modeled the steady state output
response of each controller for different concentration values of
PX (0, 6, 12, 18, 24, or 30 nM). For each concentration of PX,
we determined the steady state concentration of O for each
closed loop controller using the parameters shown in Table 1
and a fixed initial concentration of PY promoter (20 nM) (see
Methods). We found that both the Direct and Indirect
Controllers could track the reference signal accurately (Figure
2a) such that the difference between the steady state values of
reference and output were negligible (Figure 2b).
The benefit of the closed loop design became evident when

we compared the open loop and closed loop systems under a
wide range of initial conditions and parameter values. We tested

Table 1. Model Parameters for Each Control
System17,31−34,a

parameters

Direct
Controller
(open loop)

Direct
Controller

(closed loop)

Indirect
Controller
(open loop)

Indirect
Controller

(closed loop)

αX 0.1 s−1 0.1 s−1 0.1 s−1 0.1 s−1

αY 0.001 s−1 0.001 s−1 0.001 s−1 0.001 s−1

αY
+ 1 s−1 1 s−1 1 s−1 1 s−1

δX 0.0005 s−1 0.0005 s−1 0.0005 s−1 0.0005 s−1

δY 0.0005 s−1 0.0005 s−1 0.0005 s−1 0.0005 s−1

κ 0 5 × 106

M−1 s−1
0 5 × 106

M−1 s−1

ω 5 × 106

M−1 s−1
5 × 106

M−1 s−1
2.5 × 106

M−1 s−1
2.5 × 106

M−1 s−1

ν 1 s−1 1 s−1 1 s−1 1 s−1

βA 0.0001 s−1 0.0001 s−1

δA 0.00005 s−1 0.00005 s−1

αO 0.001 s−1 0.001 s−1 0.001 s−1 0.001 s−1

αO
+ 1 s−1 1 s−1 1 s−1 1 s−1

δO 0.002 s−1 0.002 s−1 0.002 s−1 0.002 s−1

aNote that these parameters correspond to reaction rates measured in
vitro.

Figure 2. Output tracks the reference signal. (a) Steady state response
of the Direct and Indirect Controllers at different concentrations of PX
(0−30 nM) and the corresponding (b) error between the steady state
concentrations of the reference and output signal. Controllers are
modeled using eqs 1−9 with parameters shown in Table 1 and initial
concentration of PY = 20 nM. (c,d) Simulations with 10 000 sets of
randomly selected parameters from within 10-fold above and below
the nominal parameter values were used to simulate the two
controllers for different initial PX−PY combinations. Both PX and PY
were tested for 1, 10, 20, and 30 nM. To ensure a fair comparison, the
same set of parameters was used in both controllers under each open/
closed loop scenario. We simulated 10 h of data to ensure settling, and
simulations that took longer than 5 h to reach the steady state were
discarded from the analysis. (c) Averaged steady state error in open
loop (i.e., without X−Y sequestration, i.e., κ = 0). (d) Averaged steady
state error in closed loop (i.e., with X−Y sequestration). The initial
concentrations of molecular species X, Y, A, O, and PY

+ are 0 nM in all
the simulations. For two-dimensional heat maps showing the data in
(c,d) see Figure S2.
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initial concentrations of PX and PY at 1, 10, 20, and 30 nM. To
ensure that our results were not specific to a single set of
parameter values, we ran 10 000 simulations with random
combinations of parameters for each PX−PY combination (see
Methods). Simulations that did not reach a steady state after 5
h (∼7% of the 10 000 simulations), for instance those with very
slow transcription rates, were discarded in the analysis, as a
reasonably fast settling is desirable in practical applications.
Figure S1 shows a representative case where the random
combination of parameters resulted in slow settling to steady
state. In the rest of the cases, we calculated the average steady
state error for the open loop and closed loop designs (Figure
2c,d). The addition of sequestration improved the tracking
accuracy, and it reduced the average steady state error by as
much as an order-of-magnitude for both the Direct and Indirect
Controllers.
Interestingly, in the open loop scenario (Figure 2c), the

Direct Controller had a lower steady state error than the
Indirect Controller in most of the tested cases; however, the
opposite was true for the closed loop (Figure 2d). One possible
explanation for this phenomenon is that the intermediate
species A in the Indirect Controller is produced by X in excess;
therefore, it may function as an integrator of the error, which
could further improve tracking accuracy when feedback is
enabled. However, in both the Direct and Indirect Controllers

we see uniformly low steady state errors in closed loop relative
to open loop across broad ranges of parameters and initial
conditions.
To understand these results further, we derived an

approximate analytical expression for the steady state value of
the controller output (O). In the closed loop case (κ ≠ 0), i.e.,
when sequestration dominates over degradation and the basal
transcription rates are negligible compared to the activated
transcription rates for O and Y species, the controller ODE
models can be simplified to

α κ≈ −
t

dX
d

P XYX X (10)

α κ≈ −+ +

t
dY
d

P XYY Y (11)

α δ≈ −+ +

t
dO
d

P OO Y O (12)

Here, we assume that the transcriptional activation reaction is
highly favorable, meaning that the dissociation rate of X (Direct
Controller) or A (Indirect Controller) bound to PY is small (ν
≈ 0). At steady state, the concentration of the output can be
approximated as

Figure 3. Robustness to disturbances and parameter sensitivity. (a−c) Output in the presence of disturbances in (a) ω, (b) ν, and (c) in the
concentration of PY

tot where d = 0.1 nM. Eqs 1−9 are used to model the systems with initial concentration of X, Y, A, O, and PY
+ set to 0 nM while

initial PX and PY are both 0.5 nM. Here, the open loop response is shown for the Direct Controller, though the Indirect Controller results are similar.
(d−g) Results of the sensitivity analysis: (d) Output as a function of time for the Direct Controller. (e) Normalized sensitivity matrix for the Direct
Controller. (f) Output as a function of time for the Indirect Controller and (g) corresponding sensitivity matrix. The initial concentrations of PX and
PY are 10 and 20 nM, respectively.
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α
δ

α
α

̅ ≈
+

+O PO

O

X

Y
X

(13)

where O̅ denotes the steady state concentration of O given a
constant input PX (Supplementary Note S1). Note that this is
the scaled version of PX that we use as the reference signal.
Closed Loop Control Enables Disturbance Rejection.

One of the potential benefits of closed loop controllers is that
they can increase the robustness of the overall system by
suppressing the effect of disturbances on the steady state
output. To demonstrate this characteristic for the controllers
we designed, we perturbed several critical reaction rates and
measured the impact of the perturbation on the output. We
focused on parameters that impact the steady state value of the
output without altering the value of the reference signal. If the
closed loop operation of the controllers is robust, at steady state
the output should not change due to the perturbation.
To test this, we first perturbed kinetic rate parameters over

time. In the controllers, ω is the association rate of the
transcriptional activator and promoter PY. An increase in ω
increases the affinity of the activator for the promoter, which
will increase the steady state concentration of O and Y. Given a
nominal ω value, we simulated the system until the output
reached steady state. We then perturbed the system by

increasing ω by a factor of two (see Methods). In the open
loop configuration, this perturbation yields an increase in the
output (Figure 3a). In contrast, in the closed loop configuration
the steady state output value of both the controllers converges
to the reference concentration after a transient, thereby
rejecting the adverse effects of the disturbance (Figure 3a).
This is because in open loop, the system lacks error
computation, while in closed loop an increase in Y sequesters
X, reducing production of O and Y. We also considered a
temporal perturbation in ν, the dissociation rate between the
activator and promoter. When we reduced ν by a factor of 2 we
observed that the closed loop controllers were able to reject the
effect of this perturbation on the output signal (Figure 3b).
In practical settings, promoter concentration can vary

significantly, such as due to fluctuations in plasmid copy
number.35 Therefore, we also tested disturbances that influence
the biochemical species PY

tot to verify that the ability to reject
disturbances is not limited to perturbations in the model
parameters. In each controller, the active promoter PY

+

produces O and Y species with an increased transcription
rate relative to PY. Y is used to compute the error. Therefore,
we hypothesized that each controller should be able to reject
disturbances in PY

tot when operating in closed loop. To test
this, we added a disturbance to PY

tot after the system reached

Figure 4. Performance evaluation using control theory metrics. (a) Five performance criteria are defined: the steady state error, E, is the absolute
difference between the output and reference; the steady state increase, ΔS, is the difference between the steady state output after and before the step
change; the Overshoot, is defined as the difference between the maximum and the steady state concentration of the output; the rise time, τ, is the
time needed for the output to increase from 10% to 90% of ΔS; finally the settling time, Ts, is the first time the output settles and stays within ±5%
of the steady state output concentration. A more detailed version of this figure is given in Figure S3a. (b) Parameter values for controllers that meet
the performance screening criteria: steady state error less than 100 nM, rise time less than 60 min, settling time less than 120 min, overshoot less
than 30 nM, and steady state increase larger than 200 nM. We used PY concentrations of 1, 10, 20, and 30 nM. For each PY concentration, we
conducted 10 000 simulations with randomly selected parameter combinations. During each simulation, a step increase in PX from 1 to 30 nM was
introduced at time 10 h. The initial concentrations of molecular species X, Y, A, O, and PY

+ were set to 0 nM. The histograms show the values of
each parameter for the controllers that met the screening criteria. Only results for PY = 30 nM are shown; similar histograms were obtained for other
values of PY (Figure S3). (c) Averaged metrics over simulations that satisfy the performance criteria, over all tested PY concentrations. Note that the
axis scale for the steady state error E is different from that in Figure 2c.
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steady state and observed that in closed loop, the output
converged to the original reference signal, as desired (Figure
3c). To test the effect of perturbations experimentally,
regulatory competitors could be added to change the
association (ω) and dissociation (ν) rates over time, or PY

tot

could be modified in the reaction through the use of inducible
promoters. We note that disturbance rejection is only possible
for perturbations that do not explicitly impact the steady state
output parameters, which are those present in eq 13.
Direct and Indirect Controllers Demonstrate Similar

Parameter Sensitivity. Next, we determined how all model
parameters govern the transient and steady state response of
the controller output. For this purpose, we performed
sensitivity analysis to determine how changes in the model
parameters affect the dynamics of the system. We calculated the
time-dependent sensitivity coefficient matrix to measure how
sensitive the output is with respect to each parameter over time
(see Methods).36,37

We conducted this analysis for each controller using the
nominal parameters (Table 1), and the results for the output
sensitivity are shown in Figures 3d−g. Coefficients with a high
value indicate that variations in the associated parameter cause
a significant change in the transient and steady state response of
the output. Note that the coefficients of the normalized
sensitivity matrix depend on time. We found that, for each
controller, only the transient response of the output is highly
sensitive to the sequestration rate (κ) and the activation
parameters (ω and ν); in contrast, the steady state value of the
output depends on the parameters in eq 13a result that
agrees with our analytical approximation.
Quantifying Controller Performance with Control-

Theory Metrics. For a comprehensive understanding of the
temporal response characteristics of the controllers, we
introduced step changes in PX ranging from 1 to 30 nM as
before, and we evaluated the controller performance based on
five performance criteria that are typically used in control
theory (Figure 4a). Specifically, we measured the steady state
error E, rise time τ, settling time Ts, Overshoot, and steady state
increase ΔS.38 Using these criteria, we compared the controllers
over a range of different initial PY concentrations. As before, to
ensure our results were not specific to particular reaction rates,
we ran 10 000 simulations with random combinations of
parameters for each set of PX and PY initial conditions.
As an example, we specified a set of desired performance

criteria designed to achieve low steady state error, fast rise time
and settling time, a sizable steady state increase, and low
overshoot. Specifically, we set E ≤ 100 nM, τ ≤ 60 min, Ts ≤
120 min, Overshoot ≤ 30 nM, and ΔS ≥ 200 nM. We
performed 10 000 simulations for each set of initial PY
concentrations (1, 10, 20, and 30 nM), and selected the
parameter combinations for which the solution satisfied the
user-specified screening criteria. Figure 4b shows histograms of
the parameters11 parameters for the Direct Controller and
13 parameters for the Indirect Controlleryielding closed loop
performance that met the design specifications. For this set of
specifications, we found that 10% of the tested combinations of
the Direct Controller met the criteria, while 5% of the Indirect
Controller values achieved similar performance. The overlap
between histograms, observed for all 11 parameters that the
controllers have in common, confirms that the two controllers
have similar performance, even though the Indirect Controller
meets the performance specifications in a smaller fraction of the
parameter space. For simplicity, only results obtained for PY =

30 nM are summarized in Figure 4b, and these results are
similar for other PY concentrations (Figure S3).
The differences between the two controllers became more

noticeable when we compared their averaged performance in
each of the five criteria (Figure 4c). While both controllers had
similar behavior in terms of steady state error (E), rise time (τ),
and steady state increase (ΔS), the addition of the intermediate
species in the Indirect Controller caused increased overshoot in
response to the step change, which also led to a slower settling
time Ts, as compared to the Direct Controller. The reason for
this overshoot is that the intermediate species A accumulates
the difference between X and Y over time before activating
transcription from the PY promoter. These results can be used
to inform synthetic controller designs, and will depend on the
user-defined performance metrics selected.

■ DISCUSSION
In this computational study, we have shown how RNA
transcriptional regulators can be used to construct closed
loop biomolecular controllers that use molecular sequestration
for effective and robust control of gene expression. Previous
models using molecular sequestration have been proposed for
closed loop controllers6 that operate using sigma and antisigma
factors. Here, we describe two sequestration-based architectures
tailored to model realistic transcriptional controllers that use
RNA. With well-defined techniques from control systems
theory, we have demonstrated that the controllers can not only
track reference signals accurately over a wide range of
conditions, they can also reject perturbations introduced to
the biochemical species and due to disturbances in kinetic
parameters. Comparisons between the open loop and closed
loop configurations illustrate the advantages of using a
sequestration reaction for error computation in both controller
architectures. In the absence of effective sequestration, such as
when degradation dominates over the sequestration reaction,
controllers have limited ability to track the reference signal and
reject disturbances (Figure S4). However, we show that for
biologically feasible parameters with strong sequestration, the
Direct and Indirect Controller architectures perform similarly,
as shown by the results of our sensitivity analysis and the
controllers capacity to meet performance specifications,
suggesting that this sequestration-based approach is viable for
realistic biosynthetic implementations.
One of the critical design requirements we identified is that

the sequestration reaction needs to dominate over the
degradation reaction. The RNA−RNA binding rate (e.g.,
sequestration rate between X and Y), is typically in the order
of 106 M−1 s−1.39 RNA degradation rates can vary widely
depending on the species.40 In order to reduce the degradation
rate, stabilizing sequences could be added to slow the
degradation of RNA.41 Simultaneously, the sequestration rate
can be increased by adding additional complementary
sequences between the two RNAs.42

Our Direct Controller architecture is tailored to model sRNA
regulators, while the Indirect Controller can capture the
dynamics of gRNA-dCas9 regulators for CRISPRa. This
distinction is necessary because these two classes of regulators
use different mechanisms to control gene expression. An sRNA
activator (such as STAR molecules)13,16 regulates transcrip-
tional elongation through RNA−RNA binding, while the
gRNA-dCas9 complex can regulate transcription by either
binding to the promoter region of the gene to control
transcription initiation, or to the gene itself to regulate
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transcriptional elongation.29,43−45 Furthermore, these models
represent the coarse-grained behavior of the controllers and
ignore processes such as RNA maturation32 and cell dilution;27

in the future it would be interesting to extend upon this work to
include these effects. Although our models neglect detailed
mechanistic processes, they demonstrate the overall feasibility
of these feedback designs. Given that the Direct and Indirect
controllers exhibit similar performance, our results suggest that
different RNA-based regulatory mechanisms can be employed
to achieve robust biological control.
In our analysis, we used an RNA transcript O as a reporter to

measure the output of the closed loop system. While this can be
accomplished in practice using fluorescent aptamers,46 it is
more common to use fluorescent proteins as reporters of gene
expression.47 This explicit readout mechanism requires addi-
tional translation reactions to convert the RNA transcript O
into a fluorescent protein such as GFP. We considered this
alternative for the Direct Controller architecture in the open
and closed loop configurations by explicitly modeling the GFP
output. Consistent with our previous results, we found that
GFP output can follow the reference signal well in the closed
loop configuration (Figure S5).
Overall, we have demonstrated that these new RNA-based

controllers can enable accurate reference tracking over a broad
range of inputs. Further, the designs are robust to disturbances
and can meet user-specified performance criteria, such as
requirements on the response time or overshoot. These
controllers could be used for a wide variety of applications.
Examples include precisely regulating processes involved in
metabolic engineering such as microbial biofuel production,3 in
therapeutics to regulate drug delivery, or for controlling the
production of antimicrobial peptides. The relative simplicity of
these designs suggests that RNA-based closed loop controllers
could be used within larger, more complex networks to improve
robustness and performance.

■ METHODS

To determine the response of each controller for a given set of
parameters, we numerically integrated ODE models (eqs 1−4
for the Direct Controller and eqs 5−9 for the Indirect
Controller) using the MATLAB ode23s function. Initial
conditions for each molecular species are described in the
figure captions, and the values of reaction parameters are shown
in Table 1. To determine the steady state response of the
output (Figure 2a,b), simulations were conducted for 10 h for
each value of PX and the end point of O was taken to be the
steady state value. For plots shown in Figures 2c,d, and 4, to
generate the 10 000 combinations of kinetic parameters, each
parameter was randomly sampled from a uniform distribution
from an interval bounded by a lower bound of 0.1× the
nominal value and an upper bound of 10× the nominal value
given in Table 1. In the perturbation plots (Figure 3a−c), the
response of each controller was first determined for the
nominal parameters (shown in Table 1), and when the output
reached the steady state, a specific disturbance was added as
described in the figure.
To determine the output sensitivity of each parameter, we

calculated the sensitivity coefficient matrix over time (si,j),
which is defined as48

=
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∂

s t
y

p
( )i j

i

j
,

(14)

where yi is a molecular species and pj is a reaction parameter
where the subscript i corresponds to a particular species and the
subscript j to a particular parameter in system. In our study, yi is
O and pj can be any parameters shown in Table 1. y represents
a general ODE model and can be expressed as
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Here, y and p are the vectors of all the species and parameters,
respectively. To calculate si,j, we use a sensitivity differential
equation expressed as
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Eq 16 is solved numerically to calculate si,j for each parameter
and the normalized values of si,j (si̅,j) are reported in Figure 3e,g
using
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Supplementary Note 1: Steady state analysis 
 

 
 
 
 
 
 
 



 
Figure S1: Representative example of the 7% of trajectories that did not reach steady state after 
5 hours of simulation time in the study in Fig. 2c-d of the main text, with: (a) Open loop 
simulations for both the Direct and Indirect controllers, and (b) Closed loop simulations for both 
the Direct and Indirect controllers, using parameters given in the table. Note that k = 0 was used 
in the open loop,  bA and dA are not applicable in the Direct Controller. All the simulations were 
conducted with an initial concentration of PY = 10 nM and Px = 10 nM.  



  
Figure S2: Two-dimensional view of of Fig. 2c-d from the main text reveals a 
complementary point-to-point comparison between the open and closed loop for the two 
controllers, in the Py-Px phase plane. Color bar indicates the steady state error in nM.  



 
Figure S3: (a) Detailed definition of the five performance criteria: steady state error, E; steady 
state increase, DS; Overshoot; rise time, t; and settling time, Ts. Parameter distributions for 
the Direct and Indirect Controllers to achieve the performance metrics specified in the main 
text, with initial PY concentrations of (b) 1 nM, (c) 10 nM, and (d) 20 nM. We introduced a 



step change from 1 to 30 nM in Px at time 10 hours. Each simulation lasted for a total of 20 
hours to ensure steady state convergence. Note that as in Fig. 4 in the main text, all parameters 
have similar distributions between the two controllers. For PY of 1 nM, ~1% of the tested 
combinations for both controllers satisfied the criteria; for PY of 10 and 20 nM, ~10% of the 
tested combinations for the Direct Controller satisfy the criteria, while only ~5% for the 
Indirect Controller met the same criteria. 

 
 

 
 

 



 
Figure S4: Controllers perform poorly when the sequestration reaction is ineffective. (a) 
Steady state response of the Direct and Indirect Controllers at different concentrations of PX (0 - 
30 nM) and (b) the corresponding steady state error between the steady state concentration values 
of the reference signal and output signal. For closed loop operation with ineffective sequestration 
we use 𝜅 = 5 × 103 M-1s-1, a value at which the error computation is not effective. Equations (1-9) 
are used to model the systems with initial concentrations of X, Y, A, O, and PY

+ set to 0 nM while 
PY is 20 nM. Other reaction parameters are shown in Table 1. (c-e) Output in the presence of 
disturbances in (c) 𝜔, (d) 𝜈, and (e) in the concentration of PY

+ where d = 40 nM. The initial 
concentrations of PX and PY are 0.5 nM. Here, the open loop response is shown for the Direct 
Controller.  
 



 
Figure S5:  Explicitly modeling GFP output for the Direct Controller. (a) Additional 
reactions are added into the model so that O is translated into a fluorescent protein (GM).1 Here 
ki and kE are the translation initiation and elongation rates and 𝛾 is the maturation rate for GM. 
Oi is the translationally initiated mRNA of the GFP protein, G is the immature GM. (b) ODE 
model of the reaction network shown in (a). (c-f) Increases in PX lead to increases in GFP 
expression (GM) when the controller is operating either in the (c, d) open loop configuration or 
in the (e, f) closed loop configuration. However, in the open loop configuration the changes in 
GM expression (d) are not proportional to changes in the PX value, while in the (f) closed loop 
configuration they are. Here, the PX concentration is normalized with respect to the GM value 
when PX = 5 nM at 2 hours. In the simulation ki= 0.0014 s-1, kE= 0.001 s-1, and 𝛾=0.2 s-1; other 
rates are listed in Table 1 in the main text.  
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